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Abstract

This paper studies the average error probability of bigrileaved coded modulation with uniform interleaving
in fully-interleaved fading channels. At large signalrtoise ratio, the dominant pairwise error events are mapped
into symbols with Hamming weight larger than one, causingatiehing of the error probability. Closed-form
expressions for the error probability with general modals are provided. For interleavers of practical length,
the flattening is noticeable only at very low values of theoeprobability.

I. MOTIVATION AND SUMMARY

Whilst QPSK is equivalent to two parallel independent BP3tarmels in the Gaussian channel, the equiv-
alence fails in fading channels because of the statistiegleddence between the quadrature components
introduced by the fading coefficients. This dependenceressiinat the error probability is dominated by the
number of QPSK symbols with Hamming weight two. The asyniptlbpe of the error probability is reduced
and an error floor results, a phenomenon similar in naturéedlbor appearing in turbo codes [1], [2].

More generally, bit-interleaved coded modulation (BICN] [s affected by the same phenomenon. For low
signal-to-noise ratio (SNR), the error probability is detged by error events with a high diversity, so that
the minimum Hamming weight of the code is distributed acribes largest possible number of modulation
symbols. Although “worse” error events with smaller divgrsare present, they are weighted by a low error
probability, and thus remain hidden for most practical jmsgs. We analyze this behaviour by first studying the
union bound to the error probability for QPSK modulationtw@ray labeling and fully-interleaved fading, and
then extending the results to general constellations. @ddlspoint approximation allows us to derive closed-
form expressions for the pairwise error probability, whigghlight the aforementioned floor effect. Finally, we

estimate of the threshold SNR at which the error probabditgnges slope.

Il. CHANNEL MODEL

At the transmitter, a linear binary code of ratg is used to generate codewords- (¢1, co, - . ., ¢¢) of length
¢, which are interleaved before modulation. Then, conseegtioups ofn interleaved bitgc,,(x—1)+1, - - - s Cmk)»
for k =1,...,n, are mapped onto a modulation symhgl using some mapping rule, such as binary reflected
Gray labeling. We denote the modulation signal settyits cardinality by|X|, and the number of bits per

symbolm = log, |X|. The signal set is normalized to unit average energy. Sidesd and: respectively
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denote real and imaginary parts. We also assumerth%ti is an integer. We denote the inverse mapping
contain the symbols with bit labels in positions .. ., j, equal tocy, ..., c,.

For each input symbol the corresponding channel ougpus given by
yr = hgVSNRxr + 25, k=1,...,n (1)

whereSNR is the average received signal-to-noise ratip,are independent samples of circularly-symmetric
Gaussian noise of variance 1, ahg are i. i. d. fading coefficients. We assume that the fadindfictent is

known at the receiver, which implies that the phasépfis irrelevant thanks to the circular symmetry of the
noise. We also assume that the fading coefficiéntsare drawn from a Nakagami distribution of parameter

my > 0 [4]. This distribution encompasses Rayleigh and AWGN cledsirand approximates Rician fading.

II. UNION BOUND AND AVERAGE PAIRWISE ERRORPROBABILITY FOR BICM

At the receiver, we consider the maximum-metric BICM decodhich selects the codeword with largest
metric [, _, ¢(xx, yx) [3]. The real-valued metric functiop(xy, y) is computed by the demodulator for each

symbol according to the formula

m

a(zk, yr) H (¢j(xn), (2)
where the bit metrigy; (c;(z) = ¢,y) is given by
gj(cj(@) =c,y) = Y plyla’,h), 3)

zexi
wherep(y|z, h) = Le~lv=hVSNRz* s the channel transition probability density.

The word error rate, denoted Ly, is the probability of selecting at the decoder a codewoff@mint from
the transmitted one. Similarly, the bit error rak is the average number of input bits in error out of the
possible/R. corresponding to a codeword of lengthExact expressions faP, or P, are difficult to obtain
and one often resorts to bounding, such as the union bounth[#je union bound, the probability of an error
event is bounded by the sum of the probabilities of all pdesfiairwise error events, where a codewefd
other than the transmitteel has a larger metric. We define tpairwise score as

o230 g U ) ()

h=1j—1 QJ pmk 1)+jvyk)

The pairwise error probabilitPEP(c’, ¢) between a reference codewardind the competitor codewokd is
given by PEP(c/, ¢) = Pr{&,, > 0}. By construction, the pairwise score is given by the sum: afymbol

Scores,

s i qj (C;n k—1 )7 yk)
F 2 log — ©)
QJ(Cm(kfl)Jrjayk)

If the codewords have Hamming distanéeat mostd symbol scores are non zero. Further, each symbol score
is in turn given by the sum ofr bit scores

q; (C;n(k,1)+ja yk)
aj (cm(k—1)+j7 Yk)

&R, = log (6)
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Clearly, we only need to consider the non-zero bit and synsboltes. These scores are random variables
whose density function depends on all the random elementkeirchannel, as well as the transmitted bits,
their position in the symbol and the bit pattern. In order wwid this dependence, and as done by ¥th
al. [5], a uniform interleaver [2] is added between the binargleand the mapper, so that the pairwise
error probability is averaged over all possible ways of jplgahe d bits in the n modulation symbols. We
distinguish these alternative placements by counting theber of symbols with weight, where0 < v < w*
andw* = min(m, d). Denoting the number of symbols of weightby n,, the symbol patterp,, is given by
pn = (no, ..., nu+). We also have that"_ n, =n andd = 3>, vn,,.

For finite-length interleaving, the conditional pairwiseae probability PEP(d, p,,) varies for every possible
pattern. As done by Yekt al. [5], averaging over all possible ways of choosihgpcations in a codeword we
have the following union bounds

P.<) Asy P(pa) PEP(d.pa), Py <) Ay P(pa) PEP(d, py) (7)
d Pn d Pn
where A4 is the number of binary codewords of Hamming weight4) = >, RL;ZAJ-_@, with A4; 4 being
the number of codewords of Hamming weightgenerated with an input message of weightand P(p,,)
is the probability of a particular patter,. A counting argument [5] gives the probability of the patter,,
P(p,) = Pr(p, = (ng, ... ,Mw+)), as

(B )

(") nolnilng! .. nyx!

P(pn) = (8)

We remove the dependence of the pairwise error probabilitthe specific choice of modulation symbols by
averaging over all possible such choices. This method stnef adding to every transmitted codewerd C
a random binary wordl € {0,1}™ known by the receiver. This is equivalent to scrambling tbéaot of the
encoder by a sequence known at the receiver. Scramblingugteas the symbols corresponding to twebit

sequencescy, ..., cy,) and(c, ..., c.) are mapped to all possible pairs of modulation symbols wiifégin

a given Hamming weight, hence making the channel symmaetrif3], [5], the scrambler role was played by
a random choice between a mapping rul@nd its complement with probability 1/2 at every channel use.
Scrambling is the natural extension of this random choiceéghts larger than 1.

The cumulant transform [6] is an equivalent representaifdhe probability distribution of a random variable;
the distribution can be recovered by an inverse Fourierstoam. Consider a non-zero symbol sccte of

Hamming weightl < v < m, i.e., the Hamming weight between the binary labels of tHeremce and

) ; (9)

wherej = (j1,...,J») IS @ sequence of bit indices, the bitc is the binary complement af, andy are the

competitor symbols i®. The cumulant transform dt* is

A sES 1 1 H?:l dj; (Eji ) Y)S
Ky(s) ZlogE {e } = log<@ Z 50 Z E l—nz_l 4 (0 )

J=01,--5dv) ce{0,1}v

channel outputs with bit-tuple ¢ transmitted at positions ig. The cumulant transform of the pairwise score

1if a more detailed code spectrum were known, namély,  and A; g4 ,,., respectively denoting the number of codewords with
Hamming weightd mapped onto the patterm, and the number of such codewords with input weighsimilar expressions to those in
Eq. (7) could be written without the averaging operation.

November 20, 2008 DRAFT



Zpw(pn) IS given by

/@pw(s,pn) logEle S“PW(p" me% (10)

The expectation in (9) is done accordingztp(y|c) = 2%1, erxfl ..... v p(ylz, h).

An important of the cumulant transform is that the tail prbiiba/ |s to great extent determined by the
cumulant transform around trsaddlepoint 35, defined as the value of for which /(3) £ d*’”—(s) = 0. Indeed,
in our notation the Chernoff bound is given BEP(d, p,,) < e"»+(5,») Then the saddlepoint approximation
to PEP(d, p,,) is given by

PEP(d, py) ~ ;eﬂpw@ﬂn), (11)
8y /2Ky (3, pn)
where the saddlepoirit is the root of the equatiory, (s, p,,) = 0.

A particularly important case arises when= 1, i.e., when the binary labels of the reference and competito
symbols in the symbol pairwise score differ only by a singieand all d different bits are mapped onto
different constellation symbols. This is the case for ile@vers of practical length. As noticed in [3], [7], this
simplifies significantly the analysis. The cumulant transfof the symbol score witlv = 1, denoted by=P,
is given by

Ki(s) = 1ogE[eS‘1 1og< Z Z [ oY ] ), (12)
j=1 ce{o 1}
We denote the corresponding pairwise error probabilityP®P, (d). As noticed in [7], This expression is
related, but not identical to, the ones appearing in [3], T8lese authors consider an approximation to the bit
decoding metrig; (c, y) whereby only one of the summands in Eq. (3) is kept. Even thahig approximation
slightly simplifies the analysis, it leads to large inacciga for mappings other than Gray mapping. In this
paper, we consider the full bit metric.

As shown in Appendix A, the probability that all bit scores amdependent approaches nas% (m—1)

for large interleaver lengths. In general, the effect ofdependence across the bits belonging to the same symbol

must be taken into account.

IV. INEQUIVALENCE BETWEENBPSKAND QPSKWITH GRAY LABELING

Obtaining closed-form expressions for the cumulant trams$ can be difficult, and numerical methods
are needed. Notable exceptions are BPSK and QPSK with Ghmling, where the patterp,, is uniquely
determined by the number of QPSK symbols whose bits are atntilagndistance 1 and 2, respectively denoted
by ny andng. Thenn; 4+ 2ne = d. It is also clear thainax{0,d — n} < ny < L%J. We denote the pairwise
error probability byPEP(d, ny). Reference [8] gave the union bounds to the average errdrapiiity for
block-fading channels, of which QPSK can be seen as a phaticase. In any case, having > 0 implies
that we haven, symbols with Hamming weight two that fade with the same fgdinefficient, and therefore,
QPSK behaves differently from two independent BPSK chamnnel

A non-zero symbol scoré® is the result of having a Hamming distance of either 1 or 2. bitsthe first
case, it is easy to see that it has a Gaussian distributioneahm2SNR|h|? and variancelSNR /A |?. This

score is equal to that of BPSK modulation with effective sigio-noise ratio; SNR|hx|?. When both bits are
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different, the score is a real-valued random variable witBaussian distribution of mean4SNR|h|? and
variance8SNR|h|2. This score coincides with that of a BPSK modulation wittsigto-noise rati&NR |hy|?.

Using the expression fat;(s) from [7], we conclude that

S w
2sSN 252SN —m(d—2ns) 165N 162SN I
:10g<<1+ sSNR- 2578 R) <1+ sSNR 45”5 R) | "
mpg my my my

Direct calculation shows that the saddlepoint is Iocate&jﬂt+%, and we finally approximate the conditional
pairwise error probabilityPEP(d, ns) by the saddlepoint approximation

1 N —mf(d—2n2) N —man
PEP(d,ng) ~ <1 + 5 R) <1 + S—R> . (15)

dmy+dSNR—n2SNR 2m m
2\/7TmeNR (mef—FSNR)(mfi-SNR) ! !

In the limit my — oo, i.e., for the AWGN channel, this formula respectively bees

1 1
13]5]13(d7 nQ) >~ WE_EdSNR, (16)

which is independent of;, as expected. The error performance approaches that ofddeaords at distance
d transmitted over BPSK with signal-to-noise raéSNR.

Zummo et al. gave a similar analysis in their study of block-fading chelsn8] and of BICM [5]. Our
use of the saddlepoint approximation gives a simple and tilgised-form approximation to the pairwise error
probability. Figure 1 depicts the bit-error probability@PSK with the(5, 7)s convolutional code fof = 40, 200
andmy = 0.5. In all cases, the saddlepoint approximation to the uniaimbdsolid lines) is very accurate for
moderate-to-large SNR. In particular, we observe the chamglope with respect to the standard union bound,
which assumes that all bits in which the codewords differ rmapped onto different symbols (independent
binary channels). The approximated threshold (19) contbwith the minimum distance iISNRy, = 22 dB
for ¢ = 40 andSNRy;, = 36 dB for ¢ = 200. This floor is absent for independent binary parallel chéria
the next section, we prove that the floor appears at very loor eates (i. e. at very higBNR) for practical

codes.

A. Asymptotic Analysis

In this section, we concentrate on the asymptotic study efpirwise error probability averaged over all
possible interleavers of length using Eq. (8). It seems clear that the best (i. e. steepestitional pairwise
error probabiltyPEP (d, n9) is attained fomy = 0, which corresponds to all bits in the pairwise score beloggi
to different symbols. Similarly, the worst (i. e. flattespnlitional pairwise error probabilitEP(d, ns) is
attained fornj = [£], which corresponds to the bits having maximal concentnaitiothe minimum possible
number of QPSK symbols. For these two cases, we show in App&nilhat the respective probabilitig3(ns)
admit the following asymptotic (im) approximations

1d
d(d— 1) 2 (&) d even

Png=0)~1-— and P(ny =nj) ~ 1 (17)
2 v2d'': g odd

1
e(te)2@ Y (q-1)2¢
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We determine the position at which the respective pairwisdgbilities cross by solving
P(ny = 0) PEP(d,0) = P(n2 = n3) PEP(d, n3). (18)

Under the assumptions th8lNR and/ are large, with the aid of Eq. (17), and keeping only the termiaimum
distanced,,i, (which we denote without the subscript, to remove cluttenfithe equations), Eq. (18) is easily

solved to obtain

1

i (ngd) v d even
SNRh = 1 2 S S 19)
Amy(le)™s (5) ) (d-1) s dﬂlﬁ) 0 odd
amrd—t

For larged, the threshold is approximately given BWNRyy, ~ 4m ¢ (%)#f in both cases. For the special case
of Rayleigh fading;ny = 1, SNRw grows linearly with the interleaver lengthand is inversely proportional
to the Hamming distance for very larged.

Figure 2 depicts the approximate value f, coarsely approximated &PEP(d), at the threshold signal-
to-noise ratio for several values ofy and/ as a function of the minimum Hamming distan¢eAs expected
from Figure 2, the error probability quickly becomes veryadimat values typically below the operating point of
common communication systems. For short packets using e@dés transmitted over channels with significant

fading, the threshold may be of importance.

V. HIGH-ORDERMODULATIONS: ASYMPTOTIC ANALYSIS

In this section, we extend the analysis presented in thequrs\section for QPSK to general constellations
and mappings, and estimate the signal-to-noise ratio athwthie slope of the error probability changes. Since
we are interested in large values $INR, we shall be working with an asymptotic approximation to éneor
probability. In particular, our analysis is based on an esien of the results in [3], [7] for the asymptotic
behaviour of the error probability in the Rayleigh-fadirttaonel. We will provide such asymptotic expressions
for the symbols scores of varying weight and use the apprpastented for QPSK in the previous section to
determine the value d§NR at which the various approximations to the error probabditoss.

In [3], Caire et al. considered the Rayleigh fading at lar§8R, and derived the following approximation

to the cumulant transform of the bit score,

di;
k1(s) ~ —log (Z SNR) , (20)

whered? is a harmonic distance given by

m

1 < 1)
dﬁ=<@222m> : 1)

e=0 j=1 yexi
wherez’ is the closest symbol in the constellatiaé to z. Eq. (20) may be used in the Chernoff bound to give
an approximation to the error probability at larg¥R. It was found in [3] that this gives a good approximation.
Using thats = % thatlimsnr—oo #1(5) = 8my [7] and the saddlepoint approximation in Eq. (11), we obtain

the largeSNR, heuristic approximation

d
PEPl(d):2\/1ﬁ( 1 ) . (22)
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In Appendix C we extend the analysis in [3] to the cumulantgfarm of the BICM symbol score of weight

v for Nakagamim ; fading, and obtain the following limit
. di(v)
/Q»U(S) = —my 10g<m SNR y (23)

whered? (v) is a generalization of the harmonic distance given by

2my _'mL,f
i~ (2T v (B ™) (20

c j :EEXC Z_ |

For a givenz, z; is thei-th symbol in the sequence ofsymbols(z}, ..., z!) which have binary labet;, at

position j; and for which the rati ZZ 1‘; = |)2

is minimum among all possible such sequences.rker= 1
andv = 1 we recover the harmonic distandg above.

As it happened with the bit score amtEP:(d), Eq. (23) may be used in the Chernoff bound or in the
saddlepoint approximation in Eq. (11), to obtain a heuriapproximation to the pairwise error probability for

large SNR, namely

m v f
1 4mf 1
PEPy(d, pn) =~ ( ) - (25)
9 /ﬂ'mf 2121 ny vl;[l dﬁ(v) SNR

For the sake of simplicity, we disregard the effect of thefiicient
SNR.

——L _ in our analysis of the threshold
Ve Y

For sufficiently large signal-to-noise ratio, the errorlpability is determined by the worst possible distribution
patternp,, of the d bits onto then symbols, that with the largest tail probability for the pese score. Then,
sinced = fo;l n,v by construction, we can view the pattepn = (ng,n1,...,n,+) as a (non-unique)
representation of the integdras a weighted sum of the integel®, 1,2, ..., w*}. By construction, the sum
>_>1 M is the number of non-zero Hamming weight symbols in the atatédicodeword. Clearly, the lowest
Zv21 n, gives the worst (flattest) pairwise error probability in fhresence of fading. We obtain an equation
for SNR¢, similar to Eq. (18) for QPSK for the fully-interleaved fadichannel,

d
dmy 1 )’”f 1 M (4mf )"“”f
P — = P(pn . 26

PrMINY" N, v=1

The left-hand side corresponds to the steepest pairwise probability, namelyPEP, (d), weighted by the
probability that all bit scores are independent, denote@lyy, ). The right-hand side corresponds to the largest
pairwise error probability with smallest number of nonezeymbol scores, that is among all possible patterns
pn With minimum ) n,. Note that the exponent &NR is —my >, n,, and thus has the lowest possible
diversity, as it should.

From Eg. (26), we can extract the value ¥Ry, as

N Pl ()" | E
SNRn >~ 4my <p”;m%v . P(po) 1, (dﬁ (U))"T, . (27)

As expected, for the specific case of QPSK with Gray mappiogyputation of this value d8NRyy, (dZ(1) =

2, d2(2) = 4) gives a result which is consistent with the result deriveection IV-A, namely Eq. (19), with
the minor difference that we use now the Chernoff bound wdrethe saddlepoint approximation was used in
the QPSK case.
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As we observe in Figure 3, the slope change present for QPSHsds present for 8-PSK with Rayleigh
fading and Gray labeling; the code is the optimum 8-state-2&8 convolutional code, with,,;,, = 4. Again,
this effect is due to the probability of having symbol scoedsHamming weight larger than 1. The figure
depicts simulation results (for interleaver sizés= 90, 3000) together with the saddlepoint approximations
for finite £ (for ¢ = 90, 300, 3000), infinite interleaving (withPEP, (d)), and with the heuristic approximation
PEPu(dp,) (only for ¢ = 90 andd = 4). For 8-PSK with Gray mapping, evaluation of Eq. (24) gives
dZ(1) = 0.7664, d2(2) = 1.7175, and d2(3) = 2.4278. Table | gives the values af(p,) for the various
patternsp,,. Table | also gives the threshokNRy;, given in Eqg. (27) for all possible values @2@1 Ny, NOt
only for the worst case. We observe that the main flattenintheferror probability takes place at hi§iNR.
This effect essentially disappears for interleavers otfical length: for¢ = 300 (resp./ = 3000) the error
probability at the first threshold is abow®—2 (resp.10~'2). The saddlepoint approximation is remarkably

precise; the heuristic approximati®@EPy (damin, p») also gives very good results.

VI. CONCLUSIONS

We have studied the large-SNR behavior of the error proiwalif BICM over fully-interleaved fading
channels. Our analysis reveals that the pairwise errorghitity is asymptotically dominated by the number
pairwise error symbols with Hamming weight larger than grielding an error floor. We have derived closed-
form approximations to this error probability. For praaticode lengths, the error floor appears at very low

error rates.

APPENDIXA

PROBABILITY OF ALL-ONE SEQUENCE

We use Stirling’s approximation to the factorial, ~ n"e~"+/27n, to Eq. (8) to obtain
m (¢ — d)f*d‘i’%
A — — —0) —
P.nd—P(nl—d,ng—O,...,nw*—O)—(é_md)nﬂH% ff y (28)

with the obvious simplifications and combinations. Extirgta factor/ in (£ —d) and (¢ —md), and cancelling

common powers of in numerator and denominator, we get

1 1
d —nt+d—3 d l—d+35

We now take logarithms, and use Taylor's expansion of tharitiym,log(1 + ¢) ~ ¢t — 1¢2, in the right-hand
side of Eq. (29). Discarding all powers éthigher than/—2, and combining common terms, we obtain
md> d d* d d(d—1)

log Py ~ — T —1).
08 Find 2 T on T2 20 ) (30)
Finally, recovering the exponentialg ~ e~ 5 (m—1),

APPENDIXB

ASYMPOTICS OFP(ng)

Assume thatl is even, son, = %d andn; = 0. Then

d(2n — d)ln!

P(ny) = @2n)l(n — Ld)(La)”

(31)
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Using Stirling’s approximation to the factorial, and afsame simplifications, we have that

1

on—d\"/ d \2¢
P ~2 . 2
) =220 (5:5) (32)

In the limit of largen, using thatlimn_,oo(l + %)" =¢e% and2n > d, we have
14 1,

oe-dd LN o4\

P(ng) ~2e™ 2 <2n> = 2<2ne> . (33)

If d is odd, thenny = 1(d — 1) andn; = 1. Then
2d!(2n — d)!n!
(2n)!(n = 5(d+ 1)1 (3(d = D)
Using again Stirling’s approximation, and after some sifigations, we have
1
V2 (20— d\*" n ndd+ o — (d+1))2°
e n n=3d+1)/) (2 _qy3(@—-1)3¢

Again for largen, using thaﬂimnéoo(l + %)" = e%, and2n > d, we have

P(ng) = (34)

1 1
V2 —de%(dJrl) d*2 V2d'12

P(ng) ~ —e 1 — = T - (36)
2n) 28 Y@ -1)2¢  e@2ne)2@ Y (d—1)2¢
APPENDIXC
ASYMPTOTIC ANALYSIS WITH FULLY-INTERLEAVED NAKAGAMI FADING
We wish to compute the limi€, (s) £ limsNr oo sﬁiﬁiif given by
. 1 (¢, Y)*
(S) SNI%,%OO SNR—™f U Z l: l 1 45; (pJ”Y)S ( )

We can rewrite the denominator as

ﬁ 4, (G, y) = ﬁ( Z eH\/W(Xz’)+z|2> _ Z f[ef\H\/W(Xfw;)JrZP’ (38)
i=1

i=1 \prexi @ i=1
Ji

wherex’ is one of all possible sequenceswimodulation symbols, with symbol at index drawn from the
set)(g;,. A similar formula holds for the denominator, now with syngdrawn from the sef(gJ Expanding

the exponent in Eq. (38), we obtain

v
v 712 v ’ * 2
.. 7) = z:e—uir\spmzi=1 | X~} +2VENR Re (S0, H(X—2})Z" ) +v|Z|* (39)

As done in [3], [7], we keep only the dominant summand in thesboresg;, (-, y) appearing in humerator
and denominator. For a giveny this summand corresponds to the sequenclaving the smallest possible
value of the rauo% In particular, in the denominator all the symbols in the sste coincide with
xz. We now carry out the expectation ovEt Completing squares, and using that the formula for theitlens

of Gaussian noise, we have that

/le’|z|267 {1 s(SNRIH|*| X —X[|*+2VSNR Re(H (X ~X[)z")) 4
T

z

_ SNRIHP (s Ty X X{P s D

). (40)
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1U

In turn, the expectation ovér of this quantity yields [9]

2 —'ITLf

sY X = X[P -5 (X - X)) SNR . (41)
; ; myg
=1 i=1
We next turn back to the limit of largeNR. We have that
v 2\ ™
ly(s) = Z Z Z|x—aj |? — Z(az—ajg) : (42)
U j.c weXJ i=1 =1
For each summand, the optimizings readily computed to bé = %, which gives
i:l k3
dmy |0 (= 2P\
év(é 2m Z Z ! v = ’ 212 : (43)
U J.c zexd (Zi:l |{E - LC1| )
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Fig. 1. Error probability of QPSK and th@, 7)s convolutional code with a uniform interleaver of lendth= 40, 200 in a fully-interleaved
fading channel withm; = 0.5. Diamonds correspond to bit-error rate simulation, thédsiite corresponds to the union bound, dashed
lines correspond to the union bound fes = max{0,d — n} (the upper one corresponds #e= 200) and dotted lines correspond to the

union bound forng = n3.
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Fig. 2. Approximation to the bit error probability of QPSKthe threshold signal-to-noise ratdNRyy,, P, = 2 PEP; (d), as a function of
the minimum Hamming distanaéfor several values ofny and/. In solid line,m; = 0.5,£ = 100; in dashed linem; = 0.5, £ = 1000;
in dash-dotted lineny = 3,¢ = 100; and in dotted linem; = 3,4 = 1000.

November 20, 2008 DRAFT



ASYMPTOTIC ANALYSIS FOR8-PSKWITH VARYING INTERLEAVER LENGTH £ = 3n AND MINIMUM DISTANCE d = 4.

November 20, 2008

TABLE |

Patternp,, ¢ P(pn) Threshold% (dB)
(n—4,4,0,00 £=90 0.8688 N/A
=300  0.9602 N/A
¢=3000  0.9960 N/A
(n—3,2,1,00 £=90 0.1287 16.0
£=300  0.0396 21.5
¢=3000  0.0040 31.6
(n—2,0,2,0), £=90 0.0015 205
(n—1,1,0,1) £=300  0.0002 26.0
£=3000 2-10-6 39.1
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Fig. 3. Bit error probability union bounds and bit-erroreaimulations of 8-PSK with the 8-state rate-2/3 convohalocode in a
fully-interleaved Rayleigh fading channel. Interleavendth ¢ = 90 (circles) and¢ = 3000 (diamonds). In solid lines, the saddlepoint
approximation union bounds f@r= 90, £ = 300, £ = 3000 and for infinite interleaving, witlPEP1(d). In dashed, dashed-dotted, and
dotted lines, the heuristic approximations with weight= 1, 2, 3 respectively.
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