
1

Large-SNR Error Probability Analysis of BICM with Uniform Interleaving

in Fading Channels

Alfonso Martinez and Albert Guillén i Fàbregas

Abstract

This paper studies the average error probability of bit-interleaved coded modulation with uniform interleaving

in fully-interleaved fading channels. At large signal-to-noise ratio, the dominant pairwise error events are mapped

into symbols with Hamming weight larger than one, causing a flattening of the error probability. Closed-form

expressions for the error probability with general modulations are provided. For interleavers of practical length,

the flattening is noticeable only at very low values of the error probability.

I. M OTIVATION AND SUMMARY

Whilst QPSK is equivalent to two parallel independent BPSK channels in the Gaussian channel, the equiv-

alence fails in fading channels because of the statistical dependence between the quadrature components

introduced by the fading coefficients. This dependence ensures that the error probability is dominated by the

number of QPSK symbols with Hamming weight two. The asymptotic slope of the error probability is reduced

and an error floor results, a phenomenon similar in nature to the floor appearing in turbo codes [1], [2].

More generally, bit-interleaved coded modulation (BICM) [3] is affected by the same phenomenon. For low

signal-to-noise ratio (SNR), the error probability is determined by error events with a high diversity, so that

the minimum Hamming weight of the code is distributed acrossthe largest possible number of modulation

symbols. Although “worse” error events with smaller diversity are present, they are weighted by a low error

probability, and thus remain hidden for most practical purposes. We analyze this behaviour by first studying the

union bound to the error probability for QPSK modulation with Gray labeling and fully-interleaved fading, and

then extending the results to general constellations. The saddlepoint approximation allows us to derive closed-

form expressions for the pairwise error probability, whichhighlight the aforementioned floor effect. Finally, we

estimate of the threshold SNR at which the error probabilitychanges slope.

II. CHANNEL MODEL

At the transmitter, a linear binary code of rateRc is used to generate codewordsc = (c1, c2, . . . , cℓ) of length

ℓ, which are interleaved before modulation. Then, consecutive groups ofm interleaved bits(cm(k−1)+1, . . . , cmk),

for k = 1, . . . , n, are mapped onto a modulation symbolxk using some mapping rule, such as binary reflected

Gray labeling. We denote the modulation signal set byX , its cardinality by|X |, and the number of bits per

symbol m = log2 |X |. The signal set is normalized to unit average energy. Subindices r and i respectively
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denote real and imaginary parts. We also assume thatn , ℓ
m

is an integer. We denote the inverse mapping

function for labeling positionj ascj : X → {0, 1}, namelycj(x) is thej-th bit of symbolx. The setsX j1,...,jv
c1,...,cv

contain the symbols with bit labels in positionsj1, . . . , jv equal toc1, . . . , cv.

For each input symbol the corresponding channel outputyk is given by

yk = hk

√
SNRxk + zk, k = 1, . . . , n (1)

whereSNR is the average received signal-to-noise ratio,zk are independent samples of circularly-symmetric

Gaussian noise of variance 1, andhk are i. i. d. fading coefficients. We assume that the fading coefficient is

known at the receiver, which implies that the phase ofhk is irrelevant thanks to the circular symmetry of the

noise. We also assume that the fading coefficientshk are drawn from a Nakagami distribution of parameter

mf > 0 [4]. This distribution encompasses Rayleigh and AWGN channels, and approximates Rician fading.

III. U NION BOUND AND AVERAGE PAIRWISE ERROR PROBABILITY FOR BICM

At the receiver, we consider the maximum-metric BICM decoder which selects the codeword with largest

metric
∏n

k=1 q(xk, yk) [3]. The real-valued metric functionq(xk, yk) is computed by the demodulator for each

symbol according to the formula

q(xk, yk) =

m
∏

j=1

qj

(

cj(xk), yk

)

, (2)

where the bit metricqj

(

cj(x) = c, y
)

is given by

qj

(

cj(x) = c, y
)

=
∑

x′∈X j
c

p(y|x′, h), (3)

wherep(y|x, h) = 1
π
e−|y−h

√
SNRx|2 is the channel transition probability density.

The word error rate, denoted byPe, is the probability of selecting at the decoder a codeword different from

the transmitted one. Similarly, the bit error ratePb is the average number of input bits in error out of the

possibleℓRc corresponding to a codeword of lengthℓ. Exact expressions forPe or Pb are difficult to obtain

and one often resorts to bounding, such as the union bound [4]. In the union bound, the probability of an error

event is bounded by the sum of the probabilities of all possible pairwise error events, where a codewordc′

other than the transmittedc has a larger metric. We define thepairwise score as

ξpw ,

n
∑

k=1

m
∑

j=1

log
qj(c

′
m(k−1)+j

, yk)

qj(cm(k−1)+j , yk)
. (4)

The pairwise error probabilityPEP(c′, c) between a reference codewordc and the competitor codewordc′ is

given by PEP(c′, c) = Pr
{

ξpw > 0
}

. By construction, the pairwise score is given by the sum ofn symbol

scores,

ξs
k ,

m
∑

j=1

log
qj(c

′
m(k−1)+j , yk)

qj(cm(k−1)+j , yk)
. (5)

If the codewords have Hamming distanced, at mostd symbol scores are non zero. Further, each symbol score

is in turn given by the sum ofm bit scores

ξb
k,j , log

qj(c
′
m(k−1)+j

, yk)

qj(cm(k−1)+j , yk)
. (6)

November 20, 2008 DRAFT



3

Clearly, we only need to consider the non-zero bit and symbolscores. These scores are random variables

whose density function depends on all the random elements inthe channel, as well as the transmitted bits,

their position in the symbol and the bit pattern. In order to avoid this dependence, and as done by Yehet

al. [5], a uniform interleaver [2] is added between the binary code and the mapper, so that the pairwise

error probability is averaged over all possible ways of placing the d bits in then modulation symbols. We

distinguish these alternative placements by counting the number of symbols with weightv, where0 ≤ v ≤ w⋆

andw⋆ = min(m, d). Denoting the number of symbols of weightv by nv, the symbol patternρn is given by

ρn = (n0, . . . , nw⋆). We also have that
∑w⋆

v=0 nv = n andd =
∑w⋆

v=1 vnv.

For finite-length interleaving, the conditional pairwise error probabilityPEP(d, ρn) varies for every possible

pattern. As done by Yehet al. [5], averaging over all possible ways of choosingd locations in a codeword we

have the following union bounds1

P̄e ≤
∑

d

Ad

∑

ρn

P (ρn) PEP(d, ρn), P̄b ≤
∑

d

A′
d

∑

ρn

P (ρn) PEP(d, ρn) (7)

where Ad is the number of binary codewords of Hamming weightd, A′
d =

∑

j
j

Rcℓ
Aj,d, with Aj,d being

the number of codewords of Hamming weightd generated with an input message of weightj, and P (ρn)

is the probability of a particular patternρn. A counting argument [5] gives the probability of the pattern ρn,

P (ρn) , Pr
(

ρn = (n0, . . . , nw⋆)
)

, as

P (ρn) =

(

m
1

)n1
(

m
2

)n2 · · ·
(

m
w⋆

)nw⋆

(

mn
d

)

n!

n0!n1!n2! . . . nw⋆ !
(8)

We remove the dependence of the pairwise error probability on the specific choice of modulation symbols by

averaging over all possible such choices. This method consists of adding to every transmitted codewordc ∈ C
a random binary wordd ∈ {0, 1}n known by the receiver. This is equivalent to scrambling the output of the

encoder by a sequence known at the receiver. Scrambling guarantees the symbols corresponding to twom-bit

sequences(c1, . . . , cm) and (c′1, . . . , c
′
m) are mapped to all possible pairs of modulation symbols differing in

a given Hamming weight, hence making the channel symmetric.In [3], [5], the scrambler role was played by

a random choice between a mapping ruleµ and its complement̄µ with probability 1/2 at every channel use.

Scrambling is the natural extension of this random choice toweights larger than 1.

The cumulant transform [6] is an equivalent representationof the probability distribution of a random variable;

the distribution can be recovered by an inverse Fourier transform. Consider a non-zero symbol scoreΞs of

Hamming weight1 ≤ v ≤ m, i.e., the Hamming weight between the binary labels of the reference and

competitor symbols isv. The cumulant transform ofΞs is

κv(s) , log E
[

es Ξs
]

= log

(

1
(

m
v

)

∑

j=(j1,...,jv)

1

2v

∑

c∈{0,1}v

E

[

∏v
i=1 qji

(c̄ji
, Y )s

∏v
i=1 qji

(cji
, Y )s

])

, (9)

wherej = (j1, . . . , jv) is a sequence ofv bit indices, the bit̄c is the binary complement ofc, andy are the

channel outputs with bitv-tuple c transmitted at positions inj. The cumulant transform of the pairwise score

1If a more detailed code spectrum were known, namelyAd,ρn
and Aj,d,ρn

, respectively denoting the number of codewords with

Hamming weightd mapped onto the patternρn and the number of such codewords with input weightj, similar expressions to those in

Eq. (7) could be written without the averaging operation.
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Ξpw(ρn) is given by

κpw(s, ρn) , log E[esΞpw(ρn)] =

w⋆

∑

v=1

nvκv(s). (10)

The expectation in (9) is done according topj(y|c) = 1
2m−v

∑

x∈X j1,...,jv
c1,...,cv

p(y|x, h).

An important of the cumulant transform is that the tail probability is to great extent determined by the

cumulant transform around thesaddlepoint ŝ, defined as the value ofs for which κ′(ŝ) ,
dκ(s)

ds
= 0. Indeed,

in our notation the Chernoff bound is given byPEP(d, ρn) ≤ eκpw(ŝ,ρn). Then the saddlepoint approximation

to PEP(d, ρn) is given by

PEP(d, ρn) ≃ 1

ŝ
√

2πκ′′
pw(ŝ, ρn)

eκpw(ŝ,ρn), (11)

where the saddlepoint̂s is the root of the equationκ′
pw(s, ρn) = 0.

A particularly important case arises whenv = 1, i.e., when the binary labels of the reference and competitor

symbols in the symbol pairwise score differ only by a single bit and all d different bits are mapped onto

different constellation symbols. This is the case for interleavers of practical length. As noticed in [3], [7], this

simplifies significantly the analysis. The cumulant transform of the symbol score withv = 1, denoted byΞb
1 ,

is given by

κ1(s) , log E
[

es Ξb
1
]

= log

(

1

m

m
∑

j=1

1

2

∑

c∈{0,1}
E

[

qj(c̄, Y )s

qj(c, Y )s

]

.

)

, (12)

We denote the corresponding pairwise error probability byPEP1(d). As noticed in [7], This expression is

related, but not identical to, the ones appearing in [3], [5]. These authors consider an approximation to the bit

decoding metricqj(c, y) whereby only one of the summands in Eq. (3) is kept. Even though this approximation

slightly simplifies the analysis, it leads to large inaccuracies for mappings other than Gray mapping. In this

paper, we consider the full bit metric.

As shown in Appendix A, the probability that all bit scores are independent approaches 1 as1− d(d−1)
2ℓ

(m−1)

for large interleaver lengths. In general, the effect of thedependence across the bits belonging to the same symbol

must be taken into account.

IV. I NEQUIVALENCE BETWEEN BPSK AND QPSKWITH GRAY LABELING

Obtaining closed-form expressions for the cumulant transforms can be difficult, and numerical methods

are needed. Notable exceptions are BPSK and QPSK with Gray labeling, where the patternρn is uniquely

determined by the number of QPSK symbols whose bits are at Hamming distance 1 and 2, respectively denoted

by n1 andn2. Thenn1 + 2n2 = d. It is also clear thatmax{0, d − n} ≤ n2 ≤ ⌊d
2⌋. We denote the pairwise

error probability byPEP(d, n2). Reference [8] gave the union bounds to the average error probability for

block-fading channels, of which QPSK can be seen as a particular case. In any case, havingn2 ≥ 0 implies

that we haven2 symbols with Hamming weight two that fade with the same fading coefficient, and therefore,

QPSK behaves differently from two independent BPSK channels.

A non-zero symbol scoreξs is the result of having a Hamming distance of either 1 or 2 bits. In the first

case, it is easy to see that it has a Gaussian distribution of mean−2SNR|hk|2 and variance4SNR|hk|2. This

score is equal to that of BPSK modulation with effective signal-to-noise ratio1
2SNR|hk|2. When both bits are
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different, the score is a real-valued random variable with aGaussian distribution of mean−4SNR|hk|2 and

variance8SNR|hk|2. This score coincides with that of a BPSK modulation with signal-to-noise ratioSNR|hk|2.

Using the expression forκ1(s) from [7], we conclude that

κpw(s, n2) = log
(

E
[

esΞ1
]d−2n2

E
[

esΞ2
]n2
)

(13)

= log

(

(

1 +
2sSNR

mf

− 2s2SNR

mf

)−mf (d−2n2)(

1 +
4sSNR

mf

− 4s2SNR

mf

)−mf n2
)

. (14)

Direct calculation shows that the saddlepoint is located atŝ = + 1
2 , and we finally approximate the conditional

pairwise error probabilityPEP(d, n2) by the saddlepoint approximation

PEP(d, n2) ≃
1

2
√

πmfSNR
dmf+dSNR−n2SNR

(2mf +SNR)(mf+SNR)

(

1 +
SNR

2mf

)−mf (d−2n2)(

1 +
SNR

mf

)−mf n2

. (15)

In the limit mf → ∞, i.e., for the AWGN channel, this formula respectively becomes

PEP(d, n2) ≃
1√

2πdSNR
e−

1
2 dSNR, (16)

which is independent ofn2, as expected. The error performance approaches that of two codewords at distance

d transmitted over BPSK with signal-to-noise ratio1
2SNR.

Zummo et al. gave a similar analysis in their study of block-fading channels [8] and of BICM [5]. Our

use of the saddlepoint approximation gives a simple and tight closed-form approximation to the pairwise error

probability. Figure 1 depicts the bit-error probability ofQPSK with the(5, 7)8 convolutional code forℓ = 40, 200

andmf = 0.5. In all cases, the saddlepoint approximation to the union bound (solid lines) is very accurate for

moderate-to-large SNR. In particular, we observe the change in slope with respect to the standard union bound,

which assumes that all bits in which the codewords differ aremapped onto different symbols (independent

binary channels). The approximated threshold (19) computed with the minimum distance isSNRth = 22 dB

for ℓ = 40 andSNRth = 36 dB for ℓ = 200. This floor is absent for independent binary parallel channels. In

the next section, we prove that the floor appears at very low error rates (i. e. at very highSNR) for practical

codes.

A. Asymptotic Analysis

In this section, we concentrate on the asymptotic study of the pairwise error probability averaged over all

possible interleavers of lengthn, using Eq. (8). It seems clear that the best (i. e. steepest) conditional pairwise

error probabiltyPEP(d, n2) is attained forn2 = 0, which corresponds to all bits in the pairwise score belonging

to different symbols. Similarly, the worst (i. e. flattest) conditional pairwise error probabilityPEP(d, n2) is

attained forn∗
2 = ⌊d

2⌋, which corresponds to the bits having maximal concentration in the minimum possible

number of QPSK symbols. For these two cases, we show in Appendix B that the respective probabilitiesP (n2)

admit the following asymptotic (inn) approximations

P (n2 = 0) ≃ 1 − d
(

d − 1
2

)

ℓ
and P (n2 = n∗

2) ≃















2
(

d
ℓe

)
1
2d

d even,
√

2d
d+1

2

e(ℓe)
1
2 (d−1)

(d−1)
1
2 d

d odd.
(17)
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We determine the position at which the respective pairwise probabilities cross by solving

P (n2 = 0)PEP(d, 0) = P (n2 = n∗
2) PEP(d, n∗

2). (18)

Under the assumptions thatSNR andℓ are large, with the aid of Eq. (17), and keeping only the term at minimum

distancedmin (which we denote without the subscript, to remove clutter from the equations), Eq. (18) is easily

solved to obtain

SNRth =















4mf

(

ℓe

8
1
d d

)
1

mf
d even

4mf(ℓe)
1

mf

(

e
2

)
2

mf (d−1) (d−1)
d

mf (d−1) (d+1)
1

mf (d−1)

d

2(d+1)
mf (d−1)

d odd.
(19)

For larged, the threshold is approximately given bySNRth ≃ 4mf

(

ℓe
d

)
1

mf in both cases. For the special case

of Rayleigh fading,mf = 1, SNRth grows linearly with the interleaver lengthℓ and is inversely proportional

to the Hamming distanced for very larged.

Figure 2 depicts the approximate value ofPb, coarsely approximated as2 PEP(d), at the threshold signal-

to-noise ratio for several values ofmf andℓ as a function of the minimum Hamming distanced. As expected

from Figure 2, the error probability quickly becomes very small, at values typically below the operating point of

common communication systems. For short packets using weakcodes transmitted over channels with significant

fading, the threshold may be of importance.

V. H IGH-ORDER MODULATIONS: ASYMPTOTIC ANALYSIS

In this section, we extend the analysis presented in the previous section for QPSK to general constellations

and mappings, and estimate the signal-to-noise ratio at which the slope of the error probability changes. Since

we are interested in large values ofSNR, we shall be working with an asymptotic approximation to theerror

probability. In particular, our analysis is based on an extension of the results in [3], [7] for the asymptotic

behaviour of the error probability in the Rayleigh-fading channel. We will provide such asymptotic expressions

for the symbols scores of varying weight and use the approachpresented for QPSK in the previous section to

determine the value ofSNR at which the various approximations to the error probability cross.

In [3], Caire et al. considered the Rayleigh fading at largeSNR, and derived the following approximation

to the cumulant transform of the bit score,

κ1(s) ≃ − log

(

d2
h

4
SNR

)

, (20)

whered2
h is a harmonic distance given by

d2
h =

(

1

m2m

1
∑

c=0

m
∑

j=1

∑

x∈X j
c

1

|x − x′|2

)−1

, (21)

wherex′ is the closest symbol in the constellationX j
c̄ to x. Eq. (20) may be used in the Chernoff bound to give

an approximation to the error probability at largeSNR. It was found in [3] that this gives a good approximation.

Using thatŝ = 1
2 , that limSNR→∞ κ1(ŝ) = 8mf [7] and the saddlepoint approximation in Eq. (11), we obtain

the largeSNR heuristic approximation

PEP1(d) ≃ 1

2
√

πd

(

4

d2
hSNR

)d

. (22)
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In Appendix C we extend the analysis in [3] to the cumulant transform of the BICM symbol score of weight

v for Nakagami-mf fading, and obtain the following limit

κv(ŝ) ≃ −mf log

(

d2
h(v)

4mf

SNR

)

, (23)

whered2
h(v) is a generalization of the harmonic distance given by

d2
h(v) =

(

1
(

m
v

)

2m

∑

c

∑

j

∑

x∈X c
j

( |
∑v

i=1(x − x′
i)|

∑v
i=1 |x − x′

i|2
)2mf

)− 1
mf

. (24)

For a givenx, x′
i is the i-th symbol in the sequence ofv symbols(x′

1, . . . , x
′
v) which have binary label̄cji

at

positionji and for which the ratio
|Pv

i=1(x−x′

i)|
P

v
i=1 |x−x′

i
|2 is minimum among all possible such sequences. Formf = 1

andv = 1 we recover the harmonic distanced2
h above.

As it happened with the bit score andPEP1(d), Eq. (23) may be used in the Chernoff bound or in the

saddlepoint approximation in Eq. (11), to obtain a heuristic approximation to the pairwise error probability for

largeSNR, namely

PEPH(d, ρn) ≃ 1

2
√

πmf

∑

v≥1 nv

m
∏

v=1

(

4mf

d2
h(v)

1

SNR

)nvmf

. (25)

For the sake of simplicity, we disregard the effect of the coefficient 1

ŝ
√

2πκpw(ŝ)
in our analysis of the threshold

SNR.

For sufficiently large signal-to-noise ratio, the error probability is determined by the worst possible distribution

patternρn of the d bits onto then symbols, that with the largest tail probability for the pairwise score. Then,

since d =
∑w⋆

v=1 nvv by construction, we can view the patternρn = (n0, n1, . . . , nw⋆) as a (non-unique)

representation of the integerd as a weighted sum of the integers{0, 1, 2, . . . , w⋆}. By construction, the sum
∑

v≥1 nv is the number of non-zero Hamming weight symbols in the candidate codeword. Clearly, the lowest
∑

v≥1 nv gives the worst (flattest) pairwise error probability in thepresence of fading. We obtain an equation

for SNRth similar to Eq. (18) for QPSK for the fully-interleaved fading channel,
(

P (ρ0)

(

4mf

d2
h(1)

1

SNRth

)mf

)d

=
1

SNR
mf

P

m
v=1 nv

th

∑

ρn:min
P

v nv

P (ρn)
m
∏

v=1

(

4mf

d2
h(v)

)nvmf

. (26)

The left-hand side corresponds to the steepest pairwise error probability, namelyPEP1(d), weighted by the

probability that all bit scores are independent, denoted byP (ρ0). The right-hand side corresponds to the largest

pairwise error probability with smallest number of non-zero symbol scores, that is among all possible patterns

ρn with minimum
∑

v nv. Note that the exponent ofSNR is −mf

∑

v nv, and thus has the lowest possible

diversity, as it should.

From Eq. (26), we can extract the value ofSNRth as

SNRth ≃ 4mf

(

∑

ρn:min
P

v
nv

P (ρn)
(

d2
h(1)

)d

P (ρ0)
∏

v

(

d2
h(v)

)nv

)− 1
mf (d−

P

v nv)

. (27)

As expected, for the specific case of QPSK with Gray mapping, computation of this value ofSNRth (d2
h(1) =

2, d2
h(2) = 4) gives a result which is consistent with the result derived in Section IV-A, namely Eq. (19), with

the minor difference that we use now the Chernoff bound whereas the saddlepoint approximation was used in

the QPSK case.
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As we observe in Figure 3, the slope change present for QPSK isalso present for 8-PSK with Rayleigh

fading and Gray labeling; the code is the optimum 8-state rate-2/3 convolutional code, withdmin = 4. Again,

this effect is due to the probability of having symbol scoresof Hamming weight larger than 1. The figure

depicts simulation results (for interleaver sizesℓ = 90, 3000) together with the saddlepoint approximations

for finite ℓ (for ℓ = 90, 300, 3000), infinite interleaving (withPEP1(d)), and with the heuristic approximation

PEPH(d ρn) (only for ℓ = 90 and d = 4). For 8-PSK with Gray mapping, evaluation of Eq. (24) gives

d2
h(1) = 0.7664, d2

h(2) = 1.7175, and d2
h(3) = 2.4278. Table I gives the values ofP (ρn) for the various

patternsρn. Table I also gives the thresholdSNRth given in Eq. (27) for all possible values of
∑

v≥1 nv, not

only for the worst case. We observe that the main flattening ofthe error probability takes place at highSNR.

This effect essentially disappears for interleavers of practical length: forℓ = 300 (resp.ℓ = 3000) the error

probability at the first threshold is about10−8 (resp.10−12). The saddlepoint approximation is remarkably

precise; the heuristic approximationPEPH(ddmin, ρn) also gives very good results.

VI. CONCLUSIONS

We have studied the large-SNR behavior of the error probability of BICM over fully-interleaved fading

channels. Our analysis reveals that the pairwise error probability is asymptotically dominated by the number

pairwise error symbols with Hamming weight larger than one,yielding an error floor. We have derived closed-

form approximations to this error probability. For practical code lengths, the error floor appears at very low

error rates.

APPENDIX A

PROBABILITY OF ALL -ONE SEQUENCE

We use Stirling’s approximation to the factorial,n! ≃ nne−n
√

2πn, to Eq. (8) to obtain

Pind , P (n1 = d, n2 = 0, . . . , nw⋆ = 0) =
ℓn

(ℓ − md)n−d+ 1
2

(ℓ − d)ℓ−d+ 1
2

ℓℓ
, (28)

with the obvious simplifications and combinations. Extracting a factorℓ in (ℓ−d) and(ℓ−md), and cancelling

common powers ofℓ in numerator and denominator, we get

Pind ≃
(

1 − d

n

)−n+d− 1
2
(

1 − d

ℓ

)ℓ−d+
1
2
. (29)

We now take logarithms, and use Taylor’s expansion of the logarithm, log(1 + t) ≃ t − 1
2 t2, in the right-hand

side of Eq. (29). Discarding all powers ofℓ higher thanℓ−2, and combining common terms, we obtain

log Pind ≃ −md2

2ℓ
+

d

2n
+

d2

2ℓ
− d

2ℓ
= −d(d − 1)

2ℓ
(m − 1). (30)

Finally, recovering the exponential,Pind ≃ e−
d(d−1)

2ℓ
(m−1).

APPENDIX B

ASYMPOTICS OFP (n2)

Assume thatd is even, son2 = 1
2d andn1 = 0. Then

P (n2) =
d!(2n − d)!n!

(2n)!(n − 1
2d)!(1

2d)!
. (31)
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Using Stirling’s approximation to the factorial, and aftersome simplifications, we have that

P (n2) ≃ 2

(

2n− d

2n

)n(
d

2n − d

)

1
2d

. (32)

In the limit of largen, using thatlimn→∞
(

1 + a
n

)n
= ea, and2n ≫ d, we have

P (n2) ≃ 2e−
1
2d

(

d

2n

)

1
2d

= 2

(

d

2ne

)

1
2d

. (33)

If d is odd, thenn2 = 1
2 (d − 1) andn1 = 1. Then

P (n2) =
2d!(2n − d)!n!

(2n)!
(

n − 1
2 (d + 1)

)

!
(

1
2 (d − 1)

)

!
. (34)

Using again Stirling’s approximation, and after some simplifications, we have

P (n2) ≃
√

2

e

(

2n− d

2n

)2n(
n

n − 1
2 (d + 1)

)n dd+
1
2
(

2n − (d + 1)
)

1
2d

(2n − d)d− 1
2 (d − 1)

1
2d

. (35)

Again for largen, using thatlimn→∞
(

1 + a
n

)n
= ea, and2n ≫ d, we have

P (n2) ≃
√

2

e
e−de

1
2 (d+1) dd+

1
2

(2n)
1
2 (d−1)(d − 1)

1
2d

=

√
2dd+

1
2

e(2ne)
1
2 (d−1)(d − 1)

1
2d

. (36)

APPENDIX C

ASYMPTOTIC ANALYSIS WITH FULLY-INTERLEAVED NAKAGAMI FADING

We wish to compute the limitℓv(s) , limSNR→∞
eκv(ŝ)

SNR−mf
, given by

ℓv(s) = lim
SNR→∞

1

SNR−mf





1

2v
(

m
v

)

∑

j,c

E

[∏v

i=1 qji
(c̄ji

, Y )s

∏v

i=1 qji
(cji

, Y )s

]



 . (37)

We can rewrite the denominator as
v
∏

i=1

qji
(c̄ji

, y) =

v
∏

i=1

(

∑

x′∈X ji
c̄ji

e−|H
√

SNR(X−x′)+Z|2
)

=
∑

x′

v
∏

i=1

e−|H
√

SNR(X−x′

i)+Z|2 , (38)

wherex′ is one of all possible sequences ofv modulation symbols, with symbol at indexji drawn from the

setX ji

c̄ji
. A similar formula holds for the denominator, now with symbols drawn from the setX ji

cji
. Expanding

the exponent in Eq. (38), we obtain
v
∏

i=1

qji
(c̄ji

, Y ) =
∑

x′

e−|H|SNR
Pv

i=1 |X−x′

i|2+2
√

SNRRe
(

Pv
i=1 H(X−x′

i)Z
∗

)

+v|Z|2 . (39)

As done in [3], [7], we keep only the dominant summand in the bit scoresqji
(·, y) appearing in numerator

and denominator. For a givenx, this summand corresponds to the sequencex′ having the smallest possible

value of the ratio
|Pv

i=1(x−x′

i)|
P

v
i=1 |x−x′

i|2
. In particular, in the denominator all the symbols in the sequence coincide with

x. We now carry out the expectation overZ. Completing squares, and using that the formula for the density

of Gaussian noise, we have that
∫

1

π
e−|z|2e−

Pv
i=1 s(SNR|H|2|X−X′

i|2+2
√

SNRRe(H(X−X′

i)z
∗)) dz

= e
−SNR|H|2

“

s
P

v
i=1 |X−X′

i|2−s2|Pv
i=1(X−X′

i)|2
”

. (40)
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In turn, the expectation overh of this quantity yields [9]


1 +



s

v
∑

i=1

|X − X ′
i|2 − s2

∣

∣

∣

∣

∣

v
∑

i=1

(X − X ′
i)

∣

∣

∣

∣

∣

2




SNR

mf





−mf

. (41)

We next turn back to the limit of largeSNR. We have that

ℓv(s) =
m

mf

f

2m
(

m
v

)

∑

j,c

∑

x∈X j
c



s

v
∑

i=1

|x − x′
i|2 − s2

∣

∣

∣

∣

∣

v
∑

i=1

(x − x′
i)

∣

∣

∣

∣

∣

2




−mf

. (42)

For each summand, the optimizings is readily computed to bês =
P

v
i=1 |x−x′

i|2

2|Pv
i=1(x−x′

i
)|2 , which gives

ℓv(ŝ) =
1

2m
(

m
v

)

∑

j,c

∑

x∈X j
c

(

4mf |∑v

i=1(x − x′
i)|

2

(
∑v

i=1 |x − x′
i|2)

2

)mf

. (43)
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Fig. 1. Error probability of QPSK and the(5, 7)8 convolutional code with a uniform interleaver of lengthℓ = 40, 200 in a fully-interleaved

fading channel withmf = 0.5. Diamonds correspond to bit-error rate simulation, the solid line corresponds to the union bound, dashed

lines correspond to the union bound forn2 = max{0, d− n} (the upper one corresponds toℓ = 200) and dotted lines correspond to the

union bound forn2 = n∗

2
.
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Fig. 2. Approximation to the bit error probability of QPSK atthe threshold signal-to-noise ratioSNRth, Pb = 2PEP1(d), as a function of

the minimum Hamming distanced for several values ofmf andℓ. In solid line,mf = 0.5, ℓ = 100; in dashed line,mf = 0.5, ℓ = 1000;

in dash-dotted line,mf = 3, ℓ = 100; and in dotted linemf = 3, ℓ = 1000.
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TABLE I

ASYMPTOTIC ANALYSIS FOR8-PSKWITH VARYING INTERLEAVER LENGTH ℓ = 3n AND MINIMUM DISTANCE d = 4.

Patternρn ℓ P (ρn) Threshold Eb
N0

(dB)

(n − 4, 4, 0, 0) ℓ = 90 0.8688 N/A

ℓ = 300 0.9602 N/A

ℓ = 3000 0.9960 N/A

(n − 3, 2, 1, 0) ℓ = 90 0.1287 16.0

ℓ = 300 0.0396 21.5

ℓ = 3000 0.0040 31.6

(n − 2, 0, 2, 0), ℓ = 90 0.0015 20.5

(n − 1, 1, 0, 1) ℓ = 300 0.0002 26.0

ℓ = 3000 2 · 10−6 39.1
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Fig. 3. Bit error probability union bounds and bit-error rate simulations of 8-PSK with the 8-state rate-2/3 convolutional code in a

fully-interleaved Rayleigh fading channel. Interleaver length ℓ = 90 (circles) andℓ = 3000 (diamonds). In solid lines, the saddlepoint

approximation union bounds forℓ = 90, ℓ = 300, ℓ = 3000 and for infinite interleaving, withPEP1(d). In dashed, dashed-dotted, and

dotted lines, the heuristic approximations with weightv = 1, 2, 3 respectively.
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